DOI: 10.34854/ICPAF.51.2024.1.1.013

RESULTS OF THE FIRST EXPERIMENTS ON THE T-15MD*)

 ¹Anashkin I.O., ¹Andreev V.F., ¹Asadulin G.M., ¹Akhmetov E.R., ¹Balashov A.Yu.,
^{1,2}Begishev R.A., ¹Belov A.M., ¹Belbas I.S., ⁴Bondarchuk E.N., ¹Borshchegovsky A.A.,
¹Chudesnov A.I., ¹Dias Mikhailova D.E., ¹Dremin M.M., ^{1,3}Drozd A.S., ¹Dubinitsky A.F., ¹Gorbunov A.V., ¹Gorshkov A.V., ¹Grashin S.A., ¹Gromova A.V., ¹Ilyin I.D.,
¹Karpov A.V., ¹Kachkin A.G., ¹Khairutdinov E.N., ¹Khvostenko A.P., ¹Khvostenko P.P.,
^{1,3}Kirneva N.A., ¹Kislov D.A., ¹Kochin V.A., ¹Krupin V.A., ¹Kuznetsova L.K., ¹Levin I.V.,
^{1,6}Lisovoy P.D., ¹Lutchenko A.V., ¹Mashunkin M.V., ⁴Mineev A.B., ¹Modyaev A.L.,
¹Mustafin N.A., ¹Myalton T.B., ¹Nemets A.R., ¹Nikolaev A.V., ¹Novikov V.N.,
¹Notkin G.E., ¹Nurgaliev M.R., ¹Obraztsov I.S., ^{1,3}Panfilov D.S., ¹Pimenov I.S.,
⁵Romannikov A.N., ¹Roy I.N., ¹Ryzhakov D.V., ^{1,6}Savrukhin P.V., ¹Sarychev D.V.,
¹Stepin A.V., ¹Sushkov A.V., ^{1,7}Sychugov D.Yu., ¹Tarasyan K.N., ^{1,6}Tepikin V.I., ¹Tolpegina Yu.I., ¹Zemtsov I.A. and the T-15MD team
¹NRC "Kurchatov Institute", Moscow, RF, <u>nrcki@nrcki.ru</u>
³National research nuclear university MEPhI, Moscow, RF
⁴NIIEFA, St.Petersburg, RF

⁶National research university MPEI, Moscow, RF ⁷Lomonosov Moscow State University, Moscow, RF

The T-15MD is a tokamak with a low aspect ratio (A = 2.2, R = 1.48 m, a = 0.67 m), a toroidal magnetic field up to B_t = 2.0 T, a D-shaped plasma cross section with ellipticity up to 1.8 and triangularity up to 0.4. Four additional plasma heating systems are provided on the tokamak: gyrotrons with the frequency of electron-cyclotron resonance, neutral injection, heating at the frequencies of ion-cyclotron and lower hybrid resonances.

In 2023, two experimental campaigns were carried out on the T-15MD with a plasma limiter configuration (graphite limiter, a = 0.67 m) and a toroidal magnetic field $B_t = 1.0 \div 1.2$ T. For gas breakdown and optimization of the current rise stage, a preionization gyrotron with a radiation frequency of 82.6 GHz and a power of 1 MW was used. During the experiments, plasma discharges with a current of up to 260 kA, a temperature of $T_e = 3.35$ keV and an average chord density of $n_e = 6 \times 10^{18}$ m⁻³ were obtained. With a plasma current of 190 kA, a record pulse duration of 2 s (Fig.1) was achieved for domestic tokamaks. In the future, it is planned to introduce into operation an additional plasma heating and current drive systems, retrofit the tokamak with diagnostics, install a lower divertor and cover the vacuum chamber wall with graphite tiles.

Figure 1. Plasma discharge in T-15MD: a) plasma in T-15MD; b) oscillograms of plasma currents in several pulses (numbers are indicated in the figure field); c) plasma temperature in the center of the vacuum chamber, measured by Thomson scattering diagnostics.

^{*)} abstracts of this report in Russian