DOI: 10.34854/ICPAF.51.2024.1.1.011

PLASMA THERMAL ENERGY CONFINEMENT IN THE GLOBUS-M2 SPHERICAL TOKAMAK HEATED BY HIGH-ENERGY ATOMIC BEAMS *)

¹Kurskiev G.S., ¹Sakharov N.V., ¹Minaev V.B., ¹Gusev V.K., ¹Petrov Yu.V.,
²Bagryansky P.A., ¹Balachenkov I.M., ¹Bakharev N.N., ¹Varfolomeev V.I., ¹Voronin A.V., ¹Goryainov V.A., ³Zhilin E.G., ¹Zhiltsov N.S., ²Ivanenko S.V., ¹Iliasova M.V., ⁴Kavin A.A., ¹Kiselev E.O., ¹Krikunov S.V., ¹Melnik A.D., ⁴Mineev A.B., ¹Miroshnikov I.V., ¹Mukhin E.E., ¹Novokhatskii A.N., ¹Patrov M.I., ⁵Petrov A.V., ⁵Ponomarenko A.M., ¹Skrekel O.M., ⁶Solovey V.A., ¹Solokha V.V., ²Solomakhin A.L., ¹Telnova A.Yu., ¹Tkachenko E.E., ¹Tokarev V.A., ¹Tolstyakov S.Yu., ¹Tukhmeneva E.A., ¹Filippov S.V., ¹Khilkevich E.M., ¹Khromov N.A., ¹Chernyshev F.V., ¹Shevelev A.E., ²Shikhovtsev I.V., ¹Shulyatiev K.D., ¹Shchegolev P.B., ^{1,5}Yashin A.Yu.
¹Ioffe Institute St. Petersburg, Russia, gleb.kurskiev@mail.ioffe.ru ²BINP SB RAS, Novosibirsk, Russia ³Ioffe Fusion Technology Ltd. St. Petersburg, Russia ⁴JSC "NIIEFA", St. Petersburg, Russia ⁵Peter the Great Polytechnic University, St. Petersburg, Russia ⁶Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC, 'Kurchatov Institute', St. Petersburg, Russia

A review of the of plasma heating and thermal energy confinement study in regime with neutral beam injection on the Globus-M2 spherical tokamak [1] for the period 2018-2023 is presented. The first experiments were carried out at plasma current $I_p = 0.25-0.3$ MA and toroidal magnetic field B_T =0.7-0.8 T. When injecting a 0.8 MW deuterium beam with a particle energy of 28 keV, a more than twofold increase in the total stored plasma energy was observed compared to the results obtained on Globus-M at the same heating power. Experiments and simulations have shown that the scalings previously obtained at the Globus-M, MAST and NSTX tokamaks and assuming a strong dependence of the energy confinement time on the magnetic field and a moderate dependence on the plasma current ($\tau_{\rm E}^{\rm GLB} \sim I_{\rm p}^{0.43} B_{\rm T}^{1.19}$) are fulfilled for a spherical tokamak and in the region of higher magnetic field values B_T up to 0.8 Tesla. The commissioning of the second injector and a new Thomson scattering diagnostic made it possible to significantly expand the field of research on plasma heating by atomic beams. In the spherical tokamak Globus-M2 with a toroidal magnetic field of 0.8-0.9 T and a plasma current of 0.35-0.4 MA the injection of neutral particles with an energy of up to 45 keV and a beam power of 0.75 MW, doubles electron temperature in comparison with pure ohmic heating regime. The additional inclusion of a second beam with a particle energy of up to 30 keV and a power of 0.5 MW made it possible to obtain a hot ion mode in the range of average plasma densities of $1.6 \div 10 \ 10^{19} \text{ m}^{-3}$. According to active spectroscopy and neutral particle analyzer, the ion temperature reached 4 keV at a plasma density of 8.10¹⁹ m⁻³ in the hot zone, exceeding the electron temperature by more than 2.5 times [2,3].

The work was carried out at the Unique Scientific Facility 'Spherical tokamak Globus-M', which is incorporated in the Federal Joint Research Center 'Material science and characterization in advanced technology' within the framework of the state contracts of the Ioffe Institute (0034-2021-0001 and 0040-2019-0023).

References

- [1]. Minaev V.B. et al., 2017 Nucl. Fusion 57 066047
- [2]. Kurskiev G.S. et al., 2022 Nucl. Fusion 62 104002
- [3]. Kurskiev G.S. et.al., 2023, Plasma Physics Reports, 49 (4), pp. 403-418

^{*)} abstracts of this report in Russian